参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 494.目标和

力扣题目链接 (opens new window)

难度:中等

给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:

  • 输入:nums: [1, 1, 1, 1, 1], S: 3
  • 输出:5

解释:

  • -1+1+1+1+1 = 3
  • +1-1+1+1+1 = 3
  • +1+1-1+1+1 = 3
  • +1+1+1-1+1 = 3
  • +1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

  • 数组非空,且长度不会超过 20 。
  • 初始的数组的和不会超过 1000 。
  • 保证返回的最终结果能被 32 位整数存下。

# 算法公开课

《代码随想录》算法视频公开课 (opens new window)装满背包有多少种方法?| LeetCode:494.目标和 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

# 思路

如果对背包问题不都熟悉先看这两篇:

如果跟着「代码随想录」一起学过回溯算法系列 (opens new window)的录友,看到这道题,应该有一种直觉,就是感觉好像回溯法可以爆搜出来。

事实确实如此,下面我也会给出相应的代码,只不过会超时。

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

# 回溯算法

在回溯算法系列中,一起学过这道题目回溯算法:39. 组合总和 (opens new window)的录友应该感觉很熟悉,这不就是组合总和问题么?

此时可以套组合总和的回溯法代码,几乎不用改动。

当然,也可以转变成序列区间选+ 或者 -,使用回溯法,那就是另一个解法。

我也把代码给出来吧,大家可以了解一下,回溯的解法,以下是本题转变为组合总和问题的回溯法代码:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
        }
        // 如果 sum + candidates[i] > target 就终止遍历
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i + 1);
            sum -= candidates[i];
            path.pop_back();

        }
    }
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (S > sum) return 0; // 此时没有方案
        if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
        int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和

        // 以下为回溯法代码
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 需要排序
        backtracking(nums, bagSize, 0, 0);
        return result.size();
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

当然以上代码超时了。

也可以使用记忆化回溯,但这里我就不在回溯上下功夫了,直接看动规吧

# 动态规划

如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
1
2

同时如果 S的绝对值已经大于sum,那么也是没有方案的。

(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案
1
2

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  1. 确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个我在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)也有介绍。

  1. 确定递推公式

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]
1

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

  1. dp数组如何初始化

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  1. 确定遍历顺序

动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  1. 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

C++代码如下:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (abs(S) > sum) return 0; // 此时没有方案
        if ((S + sum) % 2 == 1) return 0; // 此时没有方案
        int bagSize = (S + sum) / 2;
        vector<int> dp(bagSize + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {
            for (int j = bagSize; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[bagSize];
    }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(m),m为背包容量

# 总结

此时 大家应该不禁想起,我们之前讲过的回溯算法:39. 组合总和 (opens new window)是不是应该也可以用dp来做啊?

是的,如果仅仅是求个数的话,就可以用dp,但回溯算法:39. 组合总和 (opens new window)要求的是把所有组合列出来,还是要使用回溯法爆搜的。

本题还是有点难度,大家也可以记住,在求装满背包有几种方法的情况下,递推公式一般为:

dp[j] += dp[j - nums[i]];
1

后面我们在讲解完全背包的时候,还会用到这个递推公式!

# 其他语言版本

# Java

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];
	//如果target过大 sum将无法满足
        if ( target < 0 && sum < -target) return 0;
        if ((target + sum) % 2 != 0) return 0;
        int size = (target + sum) / 2;
        if(size < 0) size = -size;
        int[] dp = new int[size + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = size; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[size];
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

易于理解的二维数组版本:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {

        // 01背包应用之“有多少种不同的填满背包最大容量的方法“
        // 易于理解的二维数组解法及详细注释

        int sum = 0;
        for(int i = 0; i < nums.length; i++) {
            sum += nums[i];
        }

        // 注意nums[i] >= 0的题目条件,意味着sum也是所有nums[i]的绝对值之和
        // 这里保证了sum + target一定是大于等于零的,也就是left大于等于零(毕竟我们定义left大于right)
        if(sum < Math.abs(target)){
            return 0;
        }

        // 利用二元一次方程组将left用target和sum表示出来(替换掉right组合),详见代码随想录对此题的分析
        // 如果所求的left数组和为小数,则作为整数数组的nums里的任何元素自然是没有办法凑出这个小数的
        if((sum + target) % 2 != 0) {
            return 0;
        }

        int left = (sum + target) / 2;
        
        // dp[i][j]:遍历到数组第i个数时, left为j时的能装满背包的方法总数
        int[][] dp = new int[nums.length][left + 1];

        // 初始化最上行(dp[0][j]),当nums[0] == j时(注意nums[0]和j都一定是大于等于零的,因此不需要判断等于-j时的情况),有唯一一种取法可取到j,dp[0][j]此时等于1
        // 其他情况dp[0][j] = 0
        // java整数数组默认初始值为0
        if (nums[0] <= left) {
            dp[0][nums[0]] = 1;
        }

        // 初始化最左列(dp[i][0])
        // 当从nums数组的索引0到i的部分有n个0时(n > 0),每个0可以取+/-,因此有2的n次方中可以取到j = 0的方案
        // n = 0说明当前遍历到的数组部分没有0全为正数,因此只有一种方案可以取到j = 0(就是所有数都不取)
        int numZeros = 0;
        for(int i = 0; i < nums.length; i++) {
            if(nums[i] == 0) {
                numZeros++;
            }
            dp[i][0] = (int) Math.pow(2, numZeros);

        }

        // 递推公式分析:
        // 当nums[i] > j时,这时候nums[i]一定不能取,所以是dp[i - 1][j]种方案数
        // nums[i] <= j时,num[i]可取可不取,因此方案数是dp[i - 1][j] + dp[i - 1][j - nums[i]]
        // 由递推公式可知,先遍历i或j都可
        for(int i = 1; i < nums.length; i++) {
            for(int j = 1; j <= left; j++) {
                if(nums[i] > j) {
                    dp[i][j] = dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i]];
                }
            }
        }

	// 打印dp数组
        // for(int i = 0; i < nums.length; i++) {
        //     for(int j = 0; j <= left; j++) {
        //         System.out.print(dp[i][j] + " ");
        //     }
        //     System.out.println("");
        // }

        return dp[nums.length - 1][left];
        
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

# Python

回溯版

class Solution:


    def backtracking(self, candidates, target, total, startIndex, path, result):
        if total == target:
            result.append(path[:])  # 将当前路径的副本添加到结果中
        # 如果 sum + candidates[i] > target,则停止遍历
        for i in range(startIndex, len(candidates)):
            if total + candidates[i] > target:
                break
            total += candidates[i]
            path.append(candidates[i])
            self.backtracking(candidates, target, total, i + 1, path, result)
            total -= candidates[i]
            path.pop()

    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        total = sum(nums)
        if target > total:
            return 0  # 此时没有方案
        if (target + total) % 2 != 0:
            return 0  # 此时没有方案,两个整数相加时要注意数值溢出的问题
        bagSize = (target + total) // 2  # 转化为组合总和问题,bagSize就是目标和

        # 以下是回溯法代码
        result = []
        nums.sort()  # 需要对nums进行排序
        self.backtracking(nums, bagSize, 0, 0, [], result)
        return len(result)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

二维DP

class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        total_sum = sum(nums)  # 计算nums的总和
        if abs(target) > total_sum:
            return 0  # 此时没有方案
        if (target + total_sum) % 2 == 1:
            return 0  # 此时没有方案
        target_sum = (target + total_sum) // 2  # 目标和

        # 创建二维动态规划数组,行表示选取的元素数量,列表示累加和
        dp = [[0] * (target_sum + 1) for _ in range(len(nums) + 1)]

        # 初始化状态
        dp[0][0] = 1

        # 动态规划过程
        for i in range(1, len(nums) + 1):
            for j in range(target_sum + 1):
                dp[i][j] = dp[i - 1][j]  # 不选取当前元素
                if j >= nums[i - 1]:
                    dp[i][j] += dp[i - 1][j - nums[i - 1]]  # 选取当前元素

        return dp[len(nums)][target_sum]  # 返回达到目标和的方案数


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

一维DP

class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        total_sum = sum(nums)  # 计算nums的总和
        if abs(target) > total_sum:
            return 0  # 此时没有方案
        if (target + total_sum) % 2 == 1:
            return 0  # 此时没有方案
        target_sum = (target + total_sum) // 2  # 目标和
        dp = [0] * (target_sum + 1)  # 创建动态规划数组,初始化为0
        dp[0] = 1  # 当目标和为0时,只有一种方案,即什么都不选
        for num in nums:
            for j in range(target_sum, num - 1, -1):
                dp[j] += dp[j - num]  # 状态转移方程,累加不同选择方式的数量
        return dp[target_sum]  # 返回达到目标和的方案数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# Go

func findTargetSumWays(nums []int, target int) int {
	sum := 0
	for _, v := range nums {
		sum += v
	}
	if abs(target) > sum {
		return 0
	}
	if (sum+target)%2 == 1 {
		return 0
	}
	// 计算背包大小
	bag := (sum + target) / 2
	// 定义dp数组
	dp := make([]int, bag+1)
	// 初始化
	dp[0] = 1
	// 遍历顺序
	for i := 0; i < len(nums); i++ {
		for j := bag; j >= nums[i]; j-- {
			//推导公式
			dp[j] += dp[j-nums[i]]
			//fmt.Println(dp)
		}
	}
	return dp[bag]
}

func abs(x int) int {
	return int(math.Abs(float64(x)))
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

# Javascript

const findTargetSumWays = (nums, target) => {

    const sum = nums.reduce((a, b) => a+b);
    
    if(Math.abs(target) > sum) {
        return 0;
    }

    if((target + sum) % 2) {
        return 0;
    }

    const halfSum = (target + sum) / 2;

    let dp = new Array(halfSum+1).fill(0);
    dp[0] = 1;

    for(let i = 0; i < nums.length; i++) {
        for(let j = halfSum; j >= nums[i]; j--) {
            dp[j] += dp[j - nums[i]];
        }
    }

    return dp[halfSum];
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

# TypeScript

function findTargetSumWays(nums: number[], target: number): number {
    // 把数组分成两个组合left, right.left + right = sum, left - right = target.
    const sum: number = nums.reduce((a: number, b: number): number => a + b);
    if ((sum + target) % 2 || Math.abs(target) > sum)  return 0;
    const left: number = (sum + target) / 2;
    
    // 将问题转化为装满容量为left的背包有多少种方法
    // dp[i]表示装满容量为i的背包有多少种方法
    const dp: number[] = new Array(left + 1).fill(0);
    dp[0] = 1;  // 装满容量为0的背包有1种方法(什么也不装)
    for (let i: number = 0; i < nums.length; i++) {
        for (let j: number = left; j >= nums[i]; j--) {
            dp[j] += dp[j - nums[i]];
        }
    }
    return dp[left];
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

# Scala

object Solution {
  def findTargetSumWays(nums: Array[Int], target: Int): Int = {
    var sum = nums.sum
    if (math.abs(target) > sum) return 0 // 此时没有方案
    if ((sum + target) % 2 == 1) return 0 // 此时没有方案
    var bagSize = (sum + target) / 2
    var dp = new Array[Int](bagSize + 1)
    dp(0) = 1
    for (i <- 0 until nums.length; j <- bagSize to nums(i) by -1) {
      dp(j) += dp(j - nums(i))
    }

    dp(bagSize)
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# Rust

impl Solution {
    pub fn find_target_sum_ways(nums: Vec<i32>, target: i32) -> i32 {
        let sum = nums.iter().sum::<i32>();
        if target.abs() > sum {
            return 0;
        }
        if (target + sum) % 2 == 1 {
            return 0;
        }
        let size = (sum + target) as usize / 2;
        let mut dp = vec![0; size + 1];
        dp[0] = 1;
        for n in nums {
            for s in (n as usize..=size).rev() {
                dp[s] += dp[s - n as usize];
            }
        }
        dp[size]
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

上次更新:: 11/30/2023, 10:16:49 AM
@2021-2022 代码随想录 版权所有 粤ICP备19156078号