参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!
# 714.买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
- 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
- 输出: 8
解释: 能够达到的最大利润:
- 在此处买入 prices[0] = 1
- 在此处卖出 prices[3] = 8
- 在此处买入 prices[4] = 4
- 在此处卖出 prices[5] = 9
- 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
注意:
- 0 < prices.length <= 50000.
- 0 < prices[i] < 50000.
- 0 <= fee < 50000.
# 算法公开课
《代码随想录》算法视频公开课 (opens new window):动态规划来决定最佳时机,这次含手续费!| LeetCode:714.买卖股票的最佳时机含手续费 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解。
# 思路
本题贪心解法:贪心算法:买卖股票的最佳时机含手续费 (opens new window)
性能是:
- 时间复杂度:O(n)
- 空间复杂度:O(1)
本题使用贪心算法并不好理解,也很容易出错,那么我们再来看看是使用动规的方法如何解题。
相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。
唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。
这里重申一下dp数组的含义:
dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee
所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
本题和动态规划:122.买卖股票的最佳时机II (opens new window)的区别就是这里需要多一个减去手续费的操作。
以上分析完毕,C++代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(2, 0));
dp[0][0] -= prices[0]; // 持股票
for (int i = 1; i < n; i++) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
return max(dp[n - 1][0], dp[n - 1][1]);
}
};
2
3
4
5
6
7
8
9
10
11
12
13
- 时间复杂度:O(n)
- 空间复杂度:O(n)
# 其他语言版本
# Java:
/**
* 卖出时支付手续费
* @param prices
* @param fee
* @return
*/
public int maxProfit(int[] prices, int fee) {
int len = prices.length;
// 0 : 持股(买入)
// 1 : 不持股(售出)
// dp 定义第i天持股/不持股 所得最多现金
int[][] dp = new int[len][2];
dp[0][0] = -prices[0];
for (int i = 1; i < len; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i] - fee, dp[i - 1][1]);
}
return Math.max(dp[len - 1][0], dp[len - 1][1]);
}
/**
* 买入时支付手续费
* @param prices
* @param fee
* @return
*/
public int maxProfit(int[] prices, int fee) {
int len = prices.length;
// 0 : 持股(买入)
// 1 : 不持股(售出)
// dp 定义第i天持股/不持股 所得最多现金
int[][] dp = new int[len][2];
// 考虑买入的时候就支付手续费
dp[0][0] = -prices[0] - fee;
for (int i = 1; i < len; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i] - fee);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
}
return Math.max(dp[len - 1][0], dp[len - 1][1]);
}
// 一维数组优化
class Solution {
public int maxProfit(int[] prices, int fee) {
int[] dp = new int[2];
dp[0] = -prices[0];
dp[1] = 0;
for (int i = 1; i <= prices.length; i++) {
dp[0] = Math.max(dp[0], dp[1] - prices[i - 1]);
dp[1] = Math.max(dp[1], dp[0] + prices[i - 1] - fee);
}
return dp[1];
}
}
```Java
//使用 2*2 array
class Solution {
public int maxProfit(int[] prices, int fee) {
int dp[][] = new int[2][2];
int len = prices.length;
//[i][0] = holding the stock
//[i][1] = not holding the stock
dp[0][0] = -prices[0];
for(int i = 1; i < len; i++){
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][0] + prices[i] - fee);
}
return dp[(len - 1) % 2][1];
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# python
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
n = len(prices)
dp = [[0] * 2 for _ in range(n)]
dp[0][0] = -prices[0] #持股票
for i in range(1, n):
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
return max(dp[-1][0], dp[-1][1])
2
3
4
5
6
7
8
9
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
# 持有股票手上的最大現金
hold = -prices[0] - fee
# 不持有股票手上的最大現金
not_hold = 0
for price in prices[1:]:
new_hold = max(hold, not_hold - price - fee)
new_not_hold = max(not_hold, hold + price)
hold, not_hold = new_hold, new_not_hold
return not_hold
2
3
4
5
6
7
8
9
10
11
# Go:
// 买卖股票的最佳时机含手续费 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int, fee int) int {
n := len(prices)
dp := make([][2]int, n)
dp[0][0] = -prices[0]
for i := 1; i < n; i++ {
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
}
return dp[n-1][1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Javascript:
const maxProfit = (prices,fee) => {
let dp = Array.from(Array(prices.length), () => Array(2).fill(0));
dp[0][0] = 0 - prices[0];
for (let i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i] - fee, dp[i - 1][1]);
}
return Math.max(dp[prices.length - 1][0], dp[prices.length - 1][1]);
}
2
3
4
5
6
7
8
9
# TypeScript:
function maxProfit(prices: number[], fee: number): number {
/**
dp[i][0]:持有股票
dp[i][1]: 不持有
*/
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (let i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
return dp[length - 1][1];
};
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# C:
#define max(a, b) ((a) > (b) ? (a) : (b))
// dp[i][0] 表示第i天持有股票所省最多现金。
// dp[i][1] 表示第i天不持有股票所得最多现金
int maxProfit(int* prices, int pricesSize, int fee) {
int dp[pricesSize][2];
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < pricesSize; ++i) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
return dp[pricesSize - 1][1];
}
2
3
4
5
6
7
8
9
10
11
12
13
14
# Rust:
贪心
impl Solution {
pub fn max_profit(prices: Vec<i32>, fee: i32) -> i32 {
let mut result = 0;
let mut min_price = prices[0];
for i in 1..prices.len() {
if prices[i] < min_price { min_price = prices[i]; }
// if prices[i] >= min_price && prices[i] <= min_price + fee { continue; }
if prices[i] > min_price + fee {
result += prices[i] - min_price - fee;
min_price = prices[i] - fee;
}
}
result
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
动态规划
impl Solution {
pub fn max_profit(prices: Vec<i32>, fee: i32) -> i32 {
let mut dp = vec![vec![0; 2]; prices.len()];
dp[0][0] = -prices[0];
for (i, &p) in prices.iter().enumerate().skip(1) {
dp[i][0] = dp[i - 1][0].max(dp[i - 1][1] - p);
dp[i][1] = dp[i - 1][1].max(dp[i - 1][0] + p - fee);
}
dp[prices.len() - 1][1]
}
}
2
3
4
5
6
7
8
9
10
11
动态规划空间优化
impl Solution {
pub fn max_profit(prices: Vec<i32>, fee: i32) -> i32 {
let (mut low, mut res) = (-prices[0], 0);
for p in prices {
low = low.max(res - p);
res = res.max(p + low - fee);
}
res
}
}
2
3
4
5
6
7
8
9
10
← 38. 动规周总结 40. 股票问题总结篇 →