参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

# 103. 水流问题

卡码网题目链接(ACM模式) (opens new window)

题目描述:

现有一个 N × M 的矩阵,每个单元格包含一个数值,这个数值代表该位置的相对高度。矩阵的左边界和上边界被认为是第一组边界,而矩阵的右边界和下边界被视为第二组边界。

矩阵模拟了一个地形,当雨水落在上面时,水会根据地形的倾斜向低处流动,但只能从较高或等高的地点流向较低或等高并且相邻(上下左右方向)的地点。我们的目标是确定那些单元格,从这些单元格出发的水可以达到第一组边界和第二组边界。

输入描述:

第一行包含两个整数 N 和 M,分别表示矩阵的行数和列数。

后续 N 行,每行包含 M 个整数,表示矩阵中的每个单元格的高度。

输出描述:

输出共有多行,每行输出两个整数,用一个空格隔开,表示可达第一组边界和第二组边界的单元格的坐标,输出顺序任意。

输入示例:

5 5
1 3 1 2 4
1 2 1 3 2
2 4 7 2 1
4 5 6 1 1
1 4 1 2 1
1
2
3
4
5
6

输出示例:

0 4
1 3
2 2
3 0
3 1
3 2
4 0
4 1
1
2
3
4
5
6
7
8

提示信息:

图中的蓝色方块上的雨水既能流向第一组边界,也能流向第二组边界。所以最终答案为所有蓝色方块的坐标。

数据范围:

1 <= M, N <= 50

# 思路

一个比较直白的想法,其实就是 遍历每个点,然后看这个点 能不能同时到达第一组边界和第二组边界。

至于遍历方式,可以用dfs,也可以用bfs,以下用dfs来举例。

那么这种思路的实现代码如下:

#include <iostream>
#include <vector>
using namespace std;
int n, m;
int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1};

// 从 x,y 出发 把可以走的地方都标记上
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    if (visited[x][y]) return;

    visited[x][y] = true;

    for (int i = 0; i < 4; i++) {
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue;
        if (grid[x][y] < grid[nextx][nexty]) continue; // 高度不合适

        dfs (grid, visited, nextx, nexty);
    }
    return;
}
bool isResult(vector<vector<int>>& grid, int x, int y) {
    vector<vector<bool>> visited(n, vector<bool>(m, false));

    // 深搜,将x,y出发 能到的节点都标记上。
    dfs(grid, visited, x, y);
    bool isFirst = false;
    bool isSecond = false;

    // 以下就是判断x,y出发,是否到达第一组边界和第二组边界
    // 第一边界的上边
    for (int j = 0; j < m; j++) {
        if (visited[0][j]) {
            isFirst = true;
            break;
        }
    }
    // 第一边界的左边
    for (int i = 0; i < n; i++) {
        if (visited[i][0]) {
            isFirst = true;
            break;
        }
    }
    // 第二边界右边
    for (int j = 0; j < m; j++) {
        if (visited[n - 1][j]) {
            isSecond = true;
            break;
        }
    }
    // 第二边界下边
    for (int i = 0; i < n; i++) {
        if (visited[i][m - 1]) {
            isSecond = true;
            break;
        }
    }
    if (isFirst && isSecond) return true;
    return false;
}


int main() {
    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    // 遍历每一个点,看是否能同时到达第一组边界和第二组边界
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (isResult(grid, i, j)) {
                cout << i << " " << j << endl;
            }
        }
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

这种思路很直白,但很明显,以上代码超时了。 来看看时间复杂度。

遍历每一个节点,是 m * n,遍历每一个节点的时候,都要做深搜,深搜的时间复杂度是: m * n

那么整体时间复杂度 就是 O(m^2 * n^2) ,这是一个四次方的时间复杂度。

# 优化

那么我们可以 反过来想,从第一组边界上的节点 逆流而上,将遍历过的节点都标记上。

同样从第二组边界的边上节点 逆流而上,将遍历过的节点也标记上。

然后两方都标记过的节点就是既可以流太平洋也可以流大西洋的节点

从第一组边界边上节点出发,如图:

从第二组边界上节点出发,如图:

按照这样的逻辑,就可以写出如下遍历代码:(详细注释)

#include <iostream>
#include <vector>
using namespace std;
int n, m;
int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1};
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
    if (visited[x][y]) return;

    visited[x][y] = true;

    for (int i = 0; i < 4; i++) {
        int nextx = x + dir[i][0];
        int nexty = y + dir[i][1];
        if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue;
        if (grid[x][y] > grid[nextx][nexty]) continue; // 注意:这里是从低向高遍历

        dfs (grid, visited, nextx, nexty);
    }
    return;
}



int main() {

    cin >> n >> m;
    vector<vector<int>> grid(n, vector<int>(m, 0));

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> grid[i][j];
        }
    }
    // 标记从第一组边界上的节点出发,可以遍历的节点
    vector<vector<bool>> firstBorder(n, vector<bool>(m, false));

    // 标记从第一组边界上的节点出发,可以遍历的节点
    vector<vector<bool>> secondBorder(n, vector<bool>(m, false));

    // 从最上和最下行的节点出发,向高处遍历
    for (int i = 0; i < n; i++) {
        dfs (grid, firstBorder, i, 0); // 遍历最左列,接触第一组边界
        dfs (grid, secondBorder, i, m - 1); // 遍历最右列,接触第二组边界
    }

    // 从最左和最右列的节点出发,向高处遍历
    for (int j = 0; j < m; j++) {
        dfs (grid, firstBorder, 0, j); // 遍历最上行,接触第一组边界
        dfs (grid, secondBorder, n - 1, j); // 遍历最下行,接触第二组边界
    }
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            // 如果这个节点,从第一组边界和第二组边界出发都遍历过,就是结果
            if (firstBorder[i][j] && secondBorder[i][j]) cout << i << " " << j << endl;;
        }
    }


}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

时间复杂度分析, 关于dfs函数搜索的过程 时间复杂度是 O(n * m),这个大家比较容易想。

关键看主函数,那么每次dfs的时候,上面还是有for循环的。

第一个for循环,时间复杂度是:n * (n * m) 。

第二个for循环,时间复杂度是:m * (n * m)。

所以本题看起来 时间复杂度好像是 : n * (n * m) + m * (n * m) = (m * n) * (m + n) 。

其实这是一个误区,大家再自己看 dfs函数的实现,其实 有visited函数记录 走过的节点,而走过的节点是不会再走第二次的。

所以 调用dfs函数,只要参数传入的是 数组 firstBorder,那么地图中 每一个节点其实就遍历一次,无论你调用多少次

同理,调用dfs函数,只要 参数传入的是 数组 secondBorder,地图中每个节点也只会遍历一次。

所以,以下这段代码的时间复杂度是 2 * n * m。 地图用每个节点就遍历了两次,参数传入 firstBorder 的时候遍历一次,参数传入 secondBorder 的时候遍历一次。

// 从最上和最下行的节点出发,向高处遍历
for (int i = 0; i < n; i++) {
    dfs (grid, firstBorder, i, 0); // 遍历最左列,接触第一组边界
    dfs (grid, secondBorder, i, m - 1); // 遍历最右列,接触第二组边界
}

// 从最左和最右列的节点出发,向高处遍历
for (int j = 0; j < m; j++) {
    dfs (grid, firstBorder, 0, j); // 遍历最上行,接触第一组边界
    dfs (grid, secondBorder, n - 1, j); // 遍历最下行,接触第二组边界
}
1
2
3
4
5
6
7
8
9
10
11

那么本题整体的时间复杂度其实是: 2 * n * m + n * m ,所以最终时间复杂度为 O(n * m) 。

空间复杂度为:O(n * m) 这个就不难理解了。开了几个 n * m 的数组。

# 其他语言版本

# Java

# Python

# Go

# Rust

# Javascript

# TypeScript

# PhP

# Swift

# Scala

# C#

# Dart

# C

@2021-2024 代码随想录 版权所有 粤ICP备19156078号