参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

别看本篇选的是组合总和III,而不是组合总和,本题和上一篇77.组合相比难度刚刚好!

# 216.组合总和III

力扣题目链接 (opens new window)

找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。

说明:

  • 所有数字都是正整数。
  • 解集不能包含重复的组合。

示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]

示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]

# 算法公开课

《代码随想录》算法视频公开课 (opens new window)和组合问题有啥区别?回溯算法如何剪枝?| LeetCode:216.组合总和III (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

# 思路

本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。

相对于77. 组合 (opens new window),无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。

想到这一点了,做过77. 组合 (opens new window)之后,本题是简单一些了。

本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。

选取过程如图:

216.组合总和III

图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。

# 回溯三部曲

  • 确定递归函数参数

77. 组合 (opens new window)一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。

这里我依然定义path 和 result为全局变量。

至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。

vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
1
2

接下来还需要如下参数:

  • targetSum(int)目标和,也就是题目中的n。
  • k(int)就是题目中要求k个数的集合。
  • sum(int)为已经收集的元素的总和,也就是path里元素的总和。
  • startIndex(int)为下一层for循环搜索的起始位置。

所以代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)
1
2
3

其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。

还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。

  • 确定终止条件

什么时候终止呢?

在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。

所以如果path.size() 和 k相等了,就终止。

如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。

所以 终止代码如下:

if (path.size() == k) {
    if (sum == targetSum) result.push_back(path);
    return; // 如果path.size() == k 但sum != targetSum 直接返回
}
1
2
3
4
  • 单层搜索过程

本题和77. 组合 (opens new window)区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9

如图: 216.组合总和III

处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。

代码如下:

for (int i = startIndex; i <= 9; i++) {
    sum += i;
    path.push_back(i);
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}
1
2
3
4
5
6
7

别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!

参照关于回溯算法,你该了解这些! (opens new window)中的模板,不难写出如下C++代码:

class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    // targetSum:目标和,也就是题目中的n。
    // k:题目中要求k个数的集合。
    // sum:已经收集的元素的总和,也就是path里元素的总和。
    // startIndex:下一层for循环搜索的起始位置。
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9; i++) {
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

# 剪枝

这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。

如图: 216.组合总和III1

已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。

那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:

if (sum > targetSum) { // 剪枝操作
    return;
}
1
2
3

当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。

for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
    sum += i; // 处理
    path.push_back(i); // 处理
    if (sum > targetSum) { // 剪枝操作
        sum -= i; // 剪枝之前先把回溯做了
        path.pop_back(); // 剪枝之前先把回溯做了
        return;
    }
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}
1
2
3
4
5
6
7
8
9
10
11
12

回溯算法:组合问题再剪剪枝 (opens new window) 一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。

最后C++代码如下:

class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (sum > targetSum) { // 剪枝操作
            return; 
        }
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

# 总结

开篇就介绍了本题与77.组合 (opens new window)的区别,相对来说加了元素总和的限制,如果做完77.组合 (opens new window)再做本题在合适不过。

分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。

相信做完本题,大家对组合问题应该有初步了解了。

# 其他语言版本

# Java

模板方法

class Solution {
	List<List<Integer>> result = new ArrayList<>();
	LinkedList<Integer> path = new LinkedList<>();

	public List<List<Integer>> combinationSum3(int k, int n) {
		backTracking(n, k, 1, 0);
		return result;
	}

	private void backTracking(int targetSum, int k, int startIndex, int sum) {
		// 减枝
		if (sum > targetSum) {
			return;
		}

		if (path.size() == k) {
			if (sum == targetSum) result.add(new ArrayList<>(path));
			return;
		}

		// 减枝 9 - (k - path.size()) + 1
		for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) {
			path.add(i);
			sum += i;
			backTracking(targetSum, k, i + 1, sum);
			//回溯
			path.removeLast();
			//回溯
			sum -= i;
		}
	}
}

// 上面剪枝 i <= 9 - (k - path.size()) + 1; 如果还是不清楚
// 也可以改为 if (path.size() > k) return; 执行效率上是一样的
class Solution {
    LinkedList<Integer> path = new LinkedList<>();
    List<List<Integer>> ans = new ArrayList<>();
    public List<List<Integer>> combinationSum3(int k, int n) {
        build(k, n, 1, 0);
        return ans;
    }

    private void build(int k, int n, int startIndex, int sum) {

        if (sum > n) return;

        if (path.size() > k) return;

        if (sum == n && path.size() == k) {
            ans.add(new ArrayList<>(path));
            return;
        }

        for(int i = startIndex; i <= 9; i++) {
            path.add(i);
            sum += i;
            build(k, n, i + 1, sum);
            sum -= i;
            path.removeLast();
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

其他方法

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> list = new ArrayList<>();

    public List<List<Integer>> combinationSum3(int k, int n) {
        res.clear();
        list.clear();
        backtracking(k, n, 9);
        return res;
    }

    private void backtracking(int k, int n, int maxNum) {
        if (k == 0 && n == 0) {
            res.add(new ArrayList<>(list));
            return;
        }

        // 因为不能重复,并且单个数字最大值是maxNum,所以sum最大值为
        // (maxNum + (maxNum - 1) + ... + (maxNum - k + 1)) == k * maxNum - k*(k - 1) / 2
        if (maxNum == 0
                || n > k * maxNum - k * (k - 1) / 2
                || n < (1 + k) * k / 2) {
            return;
        }
        list.add(maxNum);
        backtracking(k - 1, n - maxNum, maxNum - 1);
        list.remove(list.size() - 1);
        backtracking(k, n, maxNum - 1);
    }

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

# Python

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        result = []  # 存放结果集
        self.backtracking(n, k, 0, 1, [], result)
        return result

    def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
        if currentSum > targetSum:  # 剪枝操作
            return  # 如果path的长度等于k但currentSum不等于targetSum,则直接返回
        if len(path) == k:
            if currentSum == targetSum:
                result.append(path[:])
            return
        for i in range(startIndex, 9 - (k - len(path)) + 2):  # 剪枝
            currentSum += i  # 处理
            path.append(i)  # 处理
            self.backtracking(targetSum, k, currentSum, i + 1, path, result)  # 注意i+1调整startIndex
            currentSum -= i  # 回溯
            path.pop()  # 回溯

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

# Go

回溯+减枝

var (
    res [][]int
    path  []int
)
func combinationSum3(k int, n int) [][]int {
    res, path = make([][]int, 0), make([]int, 0, k)
    dfs(k, n, 1, 0)
    return res
}

func dfs(k, n int, start int, sum int) {
    if len(path) == k {
        if sum == n {
            tmp := make([]int, k)
            copy(tmp, path)
            res = append(res, tmp)
        }
        return
    }
    for i := start; i <= 9; i++ {
        if sum + i > n || 9-i+1 < k-len(path) {
            break
        }
        path = append(path, i)
        dfs(k, n, i+1, sum+i)
        path = path[:len(path)-1]
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

# JavaScript

  • 未剪枝:
/**
 * @param {number} k
 * @param {number} n
 * @return {number[][]}
 */
var combinationSum3 = function (k, n) {
  // 回溯法
  let result = [],
    path = [];
  const backtracking = (_k, targetSum, sum, startIndex) => {
    // 终止条件
    if (path.length === _k) {
      if (sum === targetSum) {
        result.push(path.slice());
      }
      // 如果总和不相等,就直接返回
      return;
    }

    // 循环当前节点,因为只使用数字1到9,所以最大是9
    for (let i = startIndex; i <= 9; i++) {
      path.push(i);
      sum += i;
      // 回调函数
      backtracking(_k, targetSum, sum, i + 1);
      // 回溯
      sum -= i;
      path.pop();
    }
  };
  backtracking(k, n, 0, 1);
  return result;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
  • 剪枝:
/**
 * @param {number} k
 * @param {number} n
 * @return {number[][]}
 */
var combinationSum3 = function (k, n) {
  // 回溯法
  let result = [],
    path = [];
  const backtracking = (_k, targetSum, sum, startIndex) => {
    if (sum > targetSum) {
      return;
    }
    // 终止条件
    if (path.length === _k) {
      if (sum === targetSum) {
        result.push(path.slice());
      }
      // 如果总和不相等,就直接返回
      return;
    }

    // 循环当前节点,因为只使用数字1到9,所以最大是9
    for (let i = startIndex; i <= 9 - (_k - path.length) + 1; i++) {
      path.push(i);
      sum += i;
      // 回调函数
      backtracking(_k, targetSum, sum, i + 1);
      // 回溯
      sum -= i;
      path.pop();
    }
  };
  backtracking(k, n, 0, 1);
  return result;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

# TypeScript

function combinationSum3(k: number, n: number): number[][] {
    const resArr: number[][] = [];
    function backTracking(k: number, n: number, sum: number, startIndex: number, tempArr: number[]): void {
        if (sum > n) return;
        if (tempArr.length === k) {
            if (sum === n) {
                resArr.push(tempArr.slice());
            }
            return;
        }
        for (let i = startIndex; i <= 9 - (k - tempArr.length) + 1; i++) {
            tempArr.push(i);
            backTracking(k, n, sum + i, i + 1, tempArr);
            tempArr.pop();
        }
    }
    backTracking(k, n, 0, 1, []);
    return resArr;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

# Rust

impl Solution {
    pub fn combination_sum3(k: i32, n: i32) -> Vec<Vec<i32>> {
        let mut result = vec![];
        let mut path = vec![];
        Self::backtrace(&mut result, &mut path, n, k, 0, 1);
        result
    }
    pub fn backtrace(
        result: &mut Vec<Vec<i32>>,
        path: &mut Vec<i32>,
        target_sum: i32,
        k: i32,
        sum: i32,
        start_index: i32,
    ) {
        if sum > target_sum {
            return;
        }
        let len = path.len() as i32;
        if len == k {
            if sum == target_sum {
                result.push(path.to_vec());
            }
            return;
        }
        for i in start_index..=9 - (k - len) + 1 {
            path.push(i);
            Self::backtrace(result, path, target_sum, k, sum + i, i + 1);
            path.pop();
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

# C

int* path;
int pathTop;
int** ans;
int ansTop;
int getPathSum() {
    int i;
    int sum = 0;
    for(i = 0; i < pathTop; i++) {
        sum += path[i];
    }
    return sum;
}

void backtracking(int targetSum, int k, int sum, int startIndex) {
    if(pathTop == k) {
        if(sum == targetSum) {
            int* tempPath = (int*)malloc(sizeof(int) * k);
            int j;
            for(j = 0; j < k; j++)
                tempPath[j] = path[j];
            ans[ansTop++] = tempPath;
        }
        // 如果path.size() == k 但sum != targetSum 直接返回
        return;
    }
    int i;
    //从startIndex开始遍历,一直遍历到9
    for (i = startIndex; i <= 9; i++) {
        sum += i; // 处理
        path[pathTop++] = i; // 处理
        backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
        sum -= i; // 回溯
        pathTop--;; // 回溯
    }
}

int** combinationSum3(int k, int n, int* returnSize, int** returnColumnSizes){
    //初始化辅助变量
    path = (int*)malloc(sizeof(int) * k);
    ans = (int**)malloc(sizeof(int*) * 20);
    pathTop = ansTop = 0;

    backtracking(n, k, 0, 1);

    //设置返回的二维数组中元素个数为ansTop
    *returnSize = ansTop;
    //设置二维数组中每个元素个数的大小为k
    *returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
    int i;
    for(i = 0; i < ansTop; i++) {
        (*returnColumnSizes)[i] = k;
    }
    return ans;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

# Swift

func combinationSum3(_ count: Int, _ targetSum: Int) -> [[Int]] {
    var result = [[Int]]()
    var path = [Int]()
    func backtracking(sum: Int, start: Int) {
        // 剪枝
        if sum > targetSum { return }
        // 终止条件
        if path.count == count {
            if sum == targetSum {
                result.append(path)
            }
            return
        }

        // 单层逻辑
        let end = 9
        guard start <= end else { return }
        for i in start ... end {
            path.append(i) // 处理
            backtracking(sum: sum + i, start: i + 1)
            path.removeLast() // 回溯
        }
    }

    backtracking(sum: 0, start: 1)
    return result
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

# Scala

object Solution {
  import scala.collection.mutable
  def combinationSum3(k: Int, n: Int): List[List[Int]] = {
    var result = mutable.ListBuffer[List[Int]]()
    var path = mutable.ListBuffer[Int]()

    def backtracking(k: Int, n: Int, sum: Int, startIndex: Int): Unit = {
      if (sum > n) return // 剪枝,如果sum>目标和,就返回
      if (sum == n && path.size == k) {
        result.append(path.toList)
        return
      }
      // 剪枝
      for (i <- startIndex to (9 - (k - path.size) + 1)) {
        path.append(i)
        backtracking(k, n, sum + i, i + 1)
        path = path.take(path.size - 1)
      }
    }

    backtracking(k, n, 0, 1) // 调用递归方法
    result.toList // 最终返回结果集的List形式
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

# C#

public class Solution
{
    public IList<IList<int>> res = new List<IList<int>>();
    public IList<int> path = new List<int>();
    public IList<IList<int>> CombinationSum3(int k, int n)
    {
        BackTracking(k, n, 0, 1);
        return res;
    }
    public void BackTracking(int k, int n, int sum, int start)
    {
        if (path.Count == k)
        {
            if (sum == n)
                res.Add(new List<int>(path));
            return;
        }
        for (int i = start; i <= 9; i++)
        {
            sum += i;
            path.Add(i);
            BackTracking(k, n, sum, i + 1);
            sum -= i;
            path.RemoveAt(path.Count - 1);
        }
    }
}
// 剪枝
public class Solution
{
    public IList<IList<int>> res = new List<IList<int>>();
    public IList<int> path = new List<int>();
    public IList<IList<int>> CombinationSum3(int k, int n)
    {
        BackTracking(k, n, 0, 1);
        return res;
    }
    public void BackTracking(int k, int n, int sum, int start)
    {
        if (sum > n)
            return;
        if (path.Count == k)
        {
            if (sum == n)
                res.Add(new List<int>(path));
            return;
        }
        for (int i = start; i <= 9 - (k - path.Count) + 1; i++)
        {
            sum += i;
            path.Add(i);
            BackTracking(k, n, sum, i + 1);
            sum -= i;
            path.RemoveAt(path.Count - 1);
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
上次更新:: 8/22/2024, 9:07:28 PM
@2021-2024 代码随想录 版权所有 粤ICP备19156078号