欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 第51题. N皇后

力扣题目链接 (opens new window)

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。 51n皇后

给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例:

输入: 4

输出:

解法 1

[ [".Q..",
"...Q", "Q...", "..Q."],

解法 2

["..Q.",
"Q...", "...Q", ".Q.."] ]

解释: 4 皇后问题存在两个不同的解法。

提示:

皇后,是国际象棋中的棋子,意味着国王的妻子。皇后只做一件事,那就是“吃子”。当她遇见可以吃的棋子时,就迅速冲上去吃掉棋子。当然,她横、竖、斜都可走一到七步,可进可退。(引用自 百度百科 - 皇后 )

# 思路

如果对回溯算法基础还不了解的话,我还特意录制了一期视频:带你学透回溯算法(理论篇) (opens new window) 可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。

都知道n皇后问题是回溯算法解决的经典问题,但是用回溯解决多了组合、切割、子集、排列问题之后,遇到这种二位矩阵还会有点不知所措。

首先来看一下皇后们的约束条件:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线

确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

下面我用一个3 * 3 的棋牌,将搜索过程抽象为一颗树,如图:

51.N皇后

从图中,可以看出,二维矩阵中矩阵的高就是这颗树的高度,矩阵的宽就是树形结构中每一个节点的宽度。

那么我们用皇后们的约束条件,来回溯搜索这颗树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了

# 回溯三部曲

按照我总结的如下回溯模板,我们来依次分析:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }
    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}
1
2
3
4
5
6
7
8
9
10
11
  • 递归函数参数

我依然是定义全局变量二维数组result来记录最终结果。

参数n是棋牌的大小,然后用row来记录当前遍历到棋盘的第几层了。

代码如下:

vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
1
2
  • 递归终止条件

在如下树形结构中: 51.N皇后

可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。

代码如下:

if (row == n) {
    result.push_back(chessboard);
    return;
}
1
2
3
4
  • 单层搜索的逻辑

递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。

每次都是要从新的一行的起始位置开始搜,所以都是从0开始。

代码如下:

for (int col = 0; col < n; col++) {
    if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
        chessboard[row][col] = 'Q'; // 放置皇后
        backtracking(n, row + 1, chessboard);
        chessboard[row][col] = '.'; // 回溯,撤销皇后
    }
}
1
2
3
4
5
6
7
  • 验证棋牌是否合法

按照如下标准去重:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线 (45度和135度角)

代码如下:

bool isValid(int row, int col, vector<string>& chessboard, int n) {
    int count = 0;
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

在这份代码中,细心的同学可以发现为什么没有在同行进行检查呢?

因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。

那么按照这个模板不难写出如下C++代码:

# C++代码

class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋牌的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
    if (row == n) {
        result.push_back(chessboard);
        return;
    }
    for (int col = 0; col < n; col++) {
        if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
            chessboard[row][col] = 'Q'; // 放置皇后
            backtracking(n, row + 1, chessboard);
            chessboard[row][col] = '.'; // 回溯,撤销皇后
        }
    }
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    int count = 0;
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
public:
    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

可以看出,除了验证棋盘合法性的代码,省下来部分就是按照回溯法模板来的。

# 总结

本题是我们解决棋盘问题的第一道题目。

如果从来没有接触过N皇后问题的同学看着这样的题会感觉无从下手,可能知道要用回溯法,但也不知道该怎么去搜。

这里我明确给出了棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了

大家可以在仔细体会体会!

# 其他语言补充

Python:

class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        if not n: return []
        board = [['.'] * n for _ in range(n)]
        res = []
        def isVaild(board,row, col):
            #判断同一列是否冲突
            for i in range(len(board)):
                if board[i][col] == 'Q':
                    return False
            # 判断左上角是否冲突
            i = row -1
            j = col -1
            while i>=0 and j>=0:
                if board[i][j] == 'Q':
                    return False
                i -= 1
                j -= 1
            # 判断右上角是否冲突
            i = row - 1
            j = col + 1
            while i>=0 and j < len(board):
                if board[i][j] == 'Q':
                    return False
                i -= 1
                j += 1
            return True

        def backtracking(board, row, n):
            # 如果走到最后一行,说明已经找到一个解
            if row == n:
                temp_res = []
                for temp in board:
                    temp_str = "".join(temp)
                    temp_res.append(temp_str)
                res.append(temp_res)
            for col in range(n):
                if not isVaild(board, row, col):
                    continue
                board[row][col] = 'Q'
                backtracking(board, row+1, n)
                board[row][col] = '.'
        backtracking(board, 0, n)
        return res
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Java:

class Solution {
    List<List<String>> res = new ArrayList<>();

    public List<List<String>> solveNQueens(int n) {
        char[][] chessboard = new char[n][n];
        for (char[] c : chessboard) {
            Arrays.fill(c, '.');
        }
        backTrack(n, 0, chessboard);
        return res;
    }


    public void backTrack(int n, int row, char[][] chessboard) {
        if (row == n) {
            res.add(Array2List(chessboard));
            return;
        }

        for (int col = 0;col < n; ++col) {
            if (isValid (row, col, n, chessboard)) {
                chessboard[row][col] = 'Q';
                backTrack(n, row+1, chessboard);
                chessboard[row][col] = '.';
            }
        }

    }


    public List Array2List(char[][] chessboard) {
        List<String> list = new ArrayList<>();

        for (char[] c : chessboard) {
            list.add(String.copyValueOf(c));
        }
        return list;
    }


    public boolean isValid(int row, int col, int n, char[][] chessboard) {
        // 检查列
        for (int i=0; i<row; ++i) { // 相当于剪枝
            if (chessboard[i][col] == 'Q') {
                return false;
            }
        }

        // 检查45度对角线
        for (int i=row-1, j=col-1; i>=0 && j>=0; i--, j--) {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }

        // 检查135度对角线
        for (int i=row-1, j=col+1; i>=0 && j<=n-1; i--, j++) {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }
        return true;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Go:

import "strings"
var res [][]string

func isValid(board [][]string, row, col int) (res bool){
    n := len(board)
    for i:=0; i < row; i++ {
        if board[i][col] == "Q" {
            return false
        }
    }
    for i := 0; i < n; i++{
        if board[row][i] == "Q" {
            return false
        }
    }

    for i ,j := row, col; i >= 0 && j >=0 ; i, j = i - 1, j- 1{
        if board[i][j] == "Q"{
            return false
        }
    }
    for i, j := row, col; i >=0 && j < n; i,j = i-1, j+1 {
        if board[i][j] == "Q" {
            return false
        }
    }
    return true
}

func backtrack(board [][]string, row int) {
    size := len(board)
    if row == size{
        temp := make([]string, size)
        for i := 0; i<size;i++{
            temp[i] = strings.Join(board[i],"")
        }
        res =append(res,temp)
        return 
    }
    for col := 0; col < size; col++ {
        if !isValid(board, row, col){
            continue
        }
        board[row][col] = "Q"
        backtrack(board, row+1)
        board[row][col] = "."
    }
}

func solveNQueens(n int) [][]string {
    res = [][]string{}
    board := make([][]string, n)
    for i := 0; i < n; i++{
        board[i] = make([]string, n)
    }
    for i := 0; i < n; i++{
        for j := 0; j<n;j++{
            board[i][j] = "."
        }
    }
    backtrack(board, 0)

    return res
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Javascript:

var solveNQueens = function(n) {
    function isValid(row, col, chessBoard, n) {

        for(let i = 0; i < row; i++) {
            if(chessBoard[i][col] === 'Q') {
                return false
            }
        }

        for(let i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
            if(chessBoard[i][j] === 'Q') {
                return false
            }
        }

        for(let i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
            if(chessBoard[i][j] === 'Q') {
                return false
            }
        }
        return true
    }

    function transformChessBoard(chessBoard) {
        let chessBoardBack = []
        chessBoard.forEach(row => {
            let rowStr = ''
            row.forEach(value => {
                rowStr += value
            })
            chessBoardBack.push(rowStr)
        })

        return chessBoardBack
    }

    let result = []
    function backtracing(row,chessBoard) {
        if(row === n) {
            result.push(transformChessBoard(chessBoard))
            return
        }
        for(let col = 0; col < n; col++) {
            if(isValid(row, col, chessBoard, n)) {
                chessBoard[row][col] = 'Q'
                backtracing(row + 1,chessBoard)
                chessBoard[row][col] = '.'
            }
        }
    }
    let chessBoard = new Array(n).fill([]).map(() => new Array(n).fill('.'))
    backtracing(0,chessBoard)
    return result
    
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55