参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

# 704. 二分查找

力扣题目链接 (opens new window)

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9     
输出: 4       
解释: 9 出现在 nums 中并且下标为 4     
1
2
3

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2     
输出: -1        
解释: 2 不存在 nums 中因此返回 -1        
1
2
3

提示:

  • 你可以假设 nums 中的所有元素是不重复的。
  • n 将在 [1, 10000]之间。
  • nums 的每个元素都将在 [-9999, 9999]之间。

# 算法公开课

《代码随想录》算法视频公开课 (opens new window)手把手带你撕出正确的二分法 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

# 思路

这道题目的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件,当大家看到题目描述满足如上条件的时候,可要想一想是不是可以用二分法了。

二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。

下面我用这两种区间的定义分别讲解两种不同的二分写法。

# 二分法第一种写法

第一种写法,我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要非常重要)

区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:

  • while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
  • if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1

例如在数组:1,2,3,4,7,9,10中查找元素2,如图所示:

704.二分查找

代码如下:(详细注释)

// 版本一
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

# 二分法第二种写法

如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。

有如下两点:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]

在数组:1,2,3,4,7,9,10中查找元素2,如图所示:(注意和方法一的区别

704.二分查找1

代码如下:(详细注释)

// 版本二
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target) {
                right = middle; // target 在左区间,在[left, middle)中
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,在[middle + 1, right)中
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

# 总结

二分法是非常重要的基础算法,为什么很多同学对于二分法都是一看就会,一写就废

其实主要就是对区间的定义没有理解清楚,在循环中没有始终坚持根据查找区间的定义来做边界处理。

区间的定义就是不变量,那么在循环中坚持根据查找区间的定义来做边界处理,就是循环不变量规则。

本篇根据两种常见的区间定义,给出了两种二分法的写法,每一个边界为什么这么处理,都根据区间的定义做了详细介绍。

相信看完本篇应该对二分法有更深刻的理解了。

# 相关题目推荐

# 其他语言版本

# Java:

(版本一)左闭右闭区间

class Solution {
    public int search(int[] nums, int target) {
        // 避免当 target 小于nums[0] nums[nums.length - 1]时多次循环运算
        if (target < nums[0] || target > nums[nums.length - 1]) {
            return -1;
        }
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + ((right - left) >> 1);
            if (nums[mid] == target) {
                return mid;
            }
            else if (nums[mid] < target) {
                left = mid + 1;
            }
            else { // nums[mid] > target
                right = mid - 1;
            }
        }
        // 未找到目标值
        return -1;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

(版本二)左闭右开区间

class Solution {
    public int search(int[] nums, int target) {
        int left = 0, right = nums.length;
        while (left < right) {
            int mid = left + ((right - left) >> 1);
            if (nums[mid] == target) {
                return mid;
            }
            else if (nums[mid] < target) {
                left = mid + 1;
            }
            else { // nums[mid] > target
                right = mid;
            }
        }
        // 未找到目标值
        return -1;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

# Python:

(版本一)左闭右闭区间

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left, right = 0, len(nums) - 1  # 定义target在左闭右闭的区间里,[left, right]

        while left <= right:
            middle = left + (right - left) // 2
            
            if nums[middle] > target:
                right = middle - 1  # target在左区间,所以[left, middle - 1]
            elif nums[middle] < target:
                left = middle + 1  # target在右区间,所以[middle + 1, right]
            else:
                return middle  # 数组中找到目标值,直接返回下标
        return -1  # 未找到目标值
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(版本二)左闭右开区间

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left, right = 0, len(nums)  # 定义target在左闭右开的区间里,即:[left, right)

        while left < right:  # 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            middle = left + (right - left) // 2

            if nums[middle] > target:
                right = middle  # target 在左区间,在[left, middle)中
            elif nums[middle] < target:
                left = middle + 1  # target 在右区间,在[middle + 1, right)中
            else:
                return middle  # 数组中找到目标值,直接返回下标
        return -1  # 未找到目标值
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# Go:

(版本一)左闭右闭区间

// 时间复杂度 O(logn)
func search(nums []int, target int) int {
	// 初始化左右边界
	left := 0
	right := len(nums) - 1

	// 循环逐步缩小区间范围
	for left <= right {
		// 求区间中点
		mid := left + (right-left)>>1

		// 根据 nums[mid] 和 target 的大小关系
		// 调整区间范围
		if nums[mid] == target {
			return mid
		} else if nums[mid] < target {
			left = mid + 1
		} else {
			right = mid - 1
		}
	}

	// 在输入数组内没有找到值等于 target 的元素
	return -1
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(版本二)左闭右开区间

// 时间复杂度 O(logn)
func search(nums []int, target int) int {
	// 初始化左右边界
	left := 0
	right := len(nums)

	// 循环逐步缩小区间范围
	for left < right {
		// 求区间中点
		mid := left + (right-left)>>1

		// 根据 nums[mid] 和 target 的大小关系
		// 调整区间范围
		if nums[mid] == target {
			return mid
		} else if nums[mid] < target {
			left = mid + 1
		} else {
			right = mid
		}
	}

	// 在输入数组内没有找到值等于 target 的元素
	return -1
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

# JavaScript:

(版本一)左闭右闭区间 [left, right]

/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var search = function(nums, target) {
    // right是数组最后一个数的下标,num[right]在查找范围内,是左闭右闭区间
    let mid, left = 0, right = nums.length - 1;
    // 当left=right时,由于nums[right]在查找范围内,所以要包括此情况
    while (left <= right) {
        // 位运算 + 防止大数溢出
        mid = left + ((right - left) >> 1);
        // 如果中间数大于目标值,要把中间数排除查找范围,所以右边界更新为mid-1;如果右边界更新为mid,那中间数还在下次查找范围内
        if (nums[mid] > target) {
            right = mid - 1;  // 去左面闭区间寻找
        } else if (nums[mid] < target) {
            left = mid + 1;   // 去右面闭区间寻找
        } else {
            return mid;
        }
    }
    return -1;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

(版本二)左闭右开区间 [left, right)

/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var search = function(nums, target) {
    // right是数组最后一个数的下标+1,nums[right]不在查找范围内,是左闭右开区间
    let mid, left = 0, right = nums.length;    
    // 当left=right时,由于nums[right]不在查找范围,所以不必包括此情况
    while (left < right) {
        // 位运算 + 防止大数溢出
        mid = left + ((right - left) >> 1);
        // 如果中间值大于目标值,中间值不应在下次查找的范围内,但中间值的前一个值应在;
        // 由于right本来就不在查找范围内,所以将右边界更新为中间值,如果更新右边界为mid-1则将中间值的前一个值也踢出了下次寻找范围
        if (nums[mid] > target) {
            right = mid;  // 去左区间寻找
        } else if (nums[mid] < target) {
            left = mid + 1;   // 去右区间寻找
        } else {
            return mid;
        }
    }
    return -1;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

# TypeScript

(版本一)左闭右闭区间

function search(nums: number[], target: number): number {
    let mid: number, left: number = 0, right: number = nums.length - 1;
    while (left <= right) {
        // 位运算 + 防止大数溢出
        mid = left + ((right - left) >> 1);
        if (nums[mid] > target) {
            right = mid - 1;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else {
            return mid;
        }
    }
    return -1;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(版本二)左闭右开区间

function search(nums: number[], target: number): number {
    let mid: number, left: number = 0, right: number = nums.length;
    while (left < right) {
        // 位运算 + 防止大数溢出
        mid = left +((right - left) >> 1);
        if (nums[mid] > target) {
            right = mid;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else {
            return mid;
        }
    }
    return -1;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# Ruby:

# (版本一)左闭右闭区间

def search(nums, target)
  left, right = 0, nums.length - 1
  while left <= right	# 由于定义target在一个在左闭右闭的区间里,因此极限情况下存在left==right
    middle = (left + right) / 2
    if nums[middle] > target
      right = middle - 1
    elsif nums[middle] < target
      left = middle + 1
    else
      return middle	# return兼具返回与跳出循环的作用
    end
  end
  -1
end

# (版本二)左闭右开区间

def search(nums, target)
  left, right = 0, nums.length
  while left < right	# 由于定义target在一个在左闭右开的区间里,因此极限情况下right=left+1
    middle = (left + right) / 2
    if nums[middle] > target
      right = middle
    elsif nums[middle] < target
      left = middle + 1
    else
      return middle
    end
  end
  -1
end
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

# Swift:

// (版本一)左闭右闭区间
func search(nums: [Int], target: Int) -> Int {
    // 1. 先定义区间。这里的区间是[left, right]
    var left = 0
    var right = nums.count - 1

    while left <= right {// 因为taeget是在[left, right]中,包括两个边界值,所以这里的left == right是有意义的
        // 2. 计算区间中间的下标(如果left、right都比较大的情况下,left + right就有可能会溢出)
        // let middle = (left + right) / 2
        // 防溢出:
         let middle = left + (right - left) / 2

        // 3. 判断
        if target < nums[middle] {
            // 当目标在区间左侧,就需要更新右边的边界值,新区间为[left, middle - 1]
            right = middle - 1
        } else if target > nums[middle] {
            // 当目标在区间右侧,就需要更新左边的边界值,新区间为[middle + 1, right]
            left = middle + 1
        } else { 
            // 当目标就是在中间,则返回中间值的下标
            return middle
        }
    }

    // 如果找不到目标,则返回-1
    return -1
}
    
// (版本二)左闭右开区间
func search(nums: [Int], target: Int) -> Int {
    var left = 0
    var right = nums.count

    while left < right {
        let middle = left + ((right - left) >> 1)

        if target < nums[middle] {
            right = middle
        } else if target > nums[middle] {
            left = middle + 1
        } else {
            return middle
        }
    }

    return -1
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

# Rust:

(版本一)左闭右闭区间

use std::cmp::Ordering;
impl Solution {
    pub fn search(nums: Vec<i32>, target: i32) -> i32 {
        let (mut left, mut right) = (0_i32, nums.len() as i32 - 1);
        while left <= right {
            let mid = (right + left) / 2;
            match nums[mid as usize].cmp(&target) {
                Ordering::Less => left = mid + 1,
                Ordering::Greater => right = mid - 1,
                Ordering::Equal => return mid,
            }
        }
        -1
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

//(版本二)左闭右开区间

use std::cmp::Ordering;
impl Solution {
    pub fn search(nums: Vec<i32>, target: i32) -> i32 {
        let (mut left, mut right) = (0_i32, nums.len() as i32);
        while left < right {
            let mid = (right + left) / 2;
            match nums[mid as usize].cmp(&target) {
                Ordering::Less => left = mid + 1,
                Ordering::Greater => right = mid,
                Ordering::Equal => return mid,
            }
        }
        -1
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# C:

// (版本一) 左闭右闭区间 [left, right]
int search(int* nums, int numsSize, int target){
    int left = 0;
    int right = numsSize-1;
    int middle = 0;
    //若left小于等于right,说明区间中元素不为0
    while(left<=right) {
        //更新查找下标middle的值
        middle = (left+right)/2;
        //此时target可能会在[left,middle-1]区间中
        if(nums[middle] > target) {
            right = middle-1;
        } 
        //此时target可能会在[middle+1,right]区间中
        else if(nums[middle] < target) {
            left = middle+1;
        } 
        //当前下标元素等于target值时,返回middle
        else if(nums[middle] == target){
            return middle;
        }
    }
    //若未找到target元素,返回-1
    return -1;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// (版本二) 左闭右开区间 [left, right)
int search(int* nums, int numsSize, int target){
    int length = numsSize;
    int left = 0;
    int right = length;	//定义target在左闭右开的区间里,即:[left, right)
    int middle = 0;
    while(left < right){  // left == right时,区间[left, right)属于空集,所以用 < 避免该情况
        int middle = left + (right - left) / 2;
        if(nums[middle] < target){
            //target位于(middle , right) 中为保证集合区间的左闭右开性,可等价为[middle + 1,right)
            left = middle + 1;
        }else if(nums[middle] > target){
            //target位于[left, middle)中
            right = middle ;
        }else{	// nums[middle] == target ,找到目标值target
            return middle;
        }
    }
    //未找到目标值,返回-1
    return -1;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

# PHP:

// 左闭右闭区间
class Solution {
    /**
     * @param Integer[] $nums
     * @param Integer $target
     * @return Integer
     */
    function search($nums, $target) {
        if (count($nums) == 0) {
            return -1;
        }
        $left = 0;
        $right = count($nums) - 1;
        while ($left <= $right) {
            $mid = floor(($left + $right) / 2);
            if ($nums[$mid] == $target) {
                return $mid;
            }
            if ($nums[$mid] > $target) {
                $right = $mid - 1;
            }
            else {
                $left = $mid + 1;
            }
        }
        return -1;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

# C#:

//左闭右闭
public class Solution {  
    public int Search(int[] nums, int target) {
        int left = 0;
        int right = nums.Length - 1;
        while(left <= right){
            int mid = (right - left ) / 2 + left;
            if(nums[mid] == target){
                return mid;
            }
            else if(nums[mid] < target){
                left = mid+1;
            }
            else if(nums[mid] > target){
                right = mid-1;
            }
        }
        return -1;
    }
}

//左闭右开
public class Solution{
    public int Search(int[] nums, int target){
        int left = 0;
        int right = nums.Length;
        while(left < right){
            int mid = (right - left) / 2 + left;
            if(nums[mid] == target){
                return mid;
            }
            else if(nums[mid] < target){
                left = mid + 1;
            }
            else if(nums[mid] > target){
                right = mid;
            }
        }
        return -1;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

# Kotlin:

class Solution {
    fun search(nums: IntArray, target: Int): Int {
	// leftBorder
        var left:Int = 0
	// rightBorder
        var right:Int = nums.size - 1
	// 使用左闭右闭区间
        while (left <= right) {
            var middle:Int = left + (right - left)/2
	    // taget 在左边
            if (nums[middle] > target) {
                right = middle - 1
            }
            else {
		// target 在右边
                if (nums[middle] < target) {
                    left = middle + 1
                }
		// 找到了,返回
                else   return middle
                }
            }
	    // 没找到,返回
            return -1   
        }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

# Kotlin:

// (版本一)左闭右开区间
class Solution {
    fun search(nums: IntArray, target: Int): Int {
        var left = 0
        var right = nums.size // [left,right) 右侧为开区间,right 设置为 nums.size
        while (left < right) {
            val mid = (left + right) / 2
            if (nums[mid] < target) left = mid + 1
            else if (nums[mid] > target) right = mid // 代码的核心,循环中 right 是开区间,这里也应是开区间
            else return mid
        }
        return -1 // 没有找到 target ,返回 -1
    }
}
// (版本二)左闭右闭区间
class Solution {
    fun search(nums: IntArray, target: Int): Int {
        var left = 0
        var right = nums.size - 1 // [left,right] 右侧为闭区间,right 设置为 nums.size - 1
        while (left <= right) {
            val mid = (left + right) / 2
            if (nums[mid] < target) left = mid + 1
            else if (nums[mid] > target) right = mid - 1 // 代码的核心,循环中 right 是闭区间,这里也应是闭区间
            else return mid
        }
        return -1 // 没有找到 target ,返回 -1
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

# Scala:

(版本一)左闭右闭区间

object Solution {
  def search(nums: Array[Int], target: Int): Int = {
    var left = 0
    var right = nums.length - 1
    while (left <= right) {
      var mid = left + ((right - left) / 2)
      if (target == nums(mid)) {
        return mid
      } else if (target < nums(mid)) {
        right = mid - 1
      } else {
        left = mid + 1
      }
    }
    -1
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(版本二)左闭右开区间

object Solution {
  def search(nums: Array[Int], target: Int): Int = {
    var left = 0
    var right = nums.length
    while (left < right) {
      val mid = left + (right - left) / 2
      if (target == nums(mid)) {
        return mid
      } else if (target < nums(mid)) {
        right = mid
      } else {
        left = mid + 1
      }
    }
    -1
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Dart:

(版本一)左闭右闭区间
class Solution {
  int search(List<int> nums, int target) {
    int left = 0;
    int right = nums.length - 1;
    while (left <= right) {
      int middle = ((left + right)/2).truncate();
      switch (nums[middle].compareTo(target)) {
        case 1:
          right = middle - 1;
          continue;
        case -1:
          left = middle + 1;
          continue;
        default:
          return middle;
      }
    }
    return -1;
  }
}

(版本二)左闭右开区间
class Solution {
  int search(List<int> nums, int target) {
    int left = 0;
    int right = nums.length;
    while (left < right) {
      int middle = left + ((right - left) >> 1);
      switch (nums[middle].compareTo(target)) {
        case 1:
          right = middle;
          continue;
        case -1:
          left = middle + 1;
          continue;
        default:
          return middle;
      }
    }
    return -1;
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
上次更新:: 8/22/2024, 9:07:28 PM
@2021-2024 代码随想录 版权所有 粤ICP备19156078号