欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 222.完全二叉树的节点个数

力扣题目链接 (opens new window)

给出一个完全二叉树,求出该树的节点个数。

示例 1:

  • 输入:root = [1,2,3,4,5,6]
  • 输出:6

示例 2:

  • 输入:root = []
  • 输出:0

示例 3:

  • 输入:root = [1]
  • 输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 10^4]
  • 0 <= Node.val <= 5 * 10^4
  • 题目数据保证输入的树是 完全二叉树

# 思路

本篇给出按照普通二叉树的求法以及利用完全二叉树性质的求法。

# 普通二叉树

首先按照普通二叉树的逻辑来求。

这道题目的递归法和求二叉树的深度写法类似, 而迭代法,二叉树:层序遍历登场! (opens new window)遍历模板稍稍修改一下,记录遍历的节点数量就可以了。

递归遍历的顺序依然是后序(左右中)。

# 递归

如果对求二叉树深度还不熟悉的话,看这篇:二叉树:看看这些树的最大深度 (opens new window)

  1. 确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。

代码如下:

int getNodesNum(TreeNode* cur) {
1
  1. 确定终止条件:如果为空节点的话,就返回0,表示节点数为0。

代码如下:

if (cur == NULL) return 0;
1
  1. 确定单层递归的逻辑:先求它的左子树的节点数量,再求的右子树的节点数量,最后取总和再加一 (加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。

代码如下:

int leftNum = getNodesNum(cur->left);      // 左
int rightNum = getNodesNum(cur->right);    // 右
int treeNum = leftNum + rightNum + 1;      // 中
return treeNum;
1
2
3
4

所以整体C++代码如下:

// 版本一
class Solution {
private:
    int getNodesNum(TreeNode* cur) {
        if (cur == 0) return 0;
        int leftNum = getNodesNum(cur->left);      // 左
        int rightNum = getNodesNum(cur->right);    // 右
        int treeNum = leftNum + rightNum + 1;      // 中
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

代码精简之后C++代码如下:

// 版本二
class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == NULL) return 0;
        return 1 + countNodes(root->left) + countNodes(root->right);
    }
};
1
2
3
4
5
6
7
8
  • 时间复杂度:O(n)
  • 空间复杂度:O(logn),算上了递归系统栈占用的空间

网上基本都是这个精简的代码版本,其实不建议大家照着这个来写,代码确实精简,但隐藏了一些内容,连遍历的顺序都看不出来,所以初学者建议学习版本一的代码,稳稳的打基础

# 迭代法

如果对求二叉树层序遍历还不熟悉的话,看这篇:二叉树:层序遍历登场! (opens new window)

那么只要模板少做改动,加一个变量result,统计节点数量就可以了

class Solution {
public:
    int countNodes(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                result++;   // 记录节点数量
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

# 完全二叉树

以上方法都是按照普通二叉树来做的,对于完全二叉树特性不了解的同学可以看这篇 关于二叉树,你该了解这些! (opens new window),这篇详细介绍了各种二叉树的特性。

完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

完全二叉树(一)如图: 222.完全二叉树的节点个数

完全二叉树(二)如图: 222.完全二叉树的节点个数1

可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。

C++代码如下:

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftHeight = 0, rightHeight = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftHeight++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightHeight++;
        }
        if (leftHeight == rightHeight) {
            return (2 << leftHeight) - 1; // 注意(2<<1) 相当于2^2,所以leftHeight初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  • 时间复杂度:O(logn * logn)
  • 空间复杂度:O(logn)

# 其他语言版本

# Java

class Solution {
    // 通用递归解法
    public int countNodes(TreeNode root) {
        if(root == null) {
            return 0;
        }
        return countNodes(root.left) + countNodes(root.right) + 1;
    }
}
1
2
3
4
5
6
7
8
9
class Solution {
    // 迭代法
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int result = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size -- > 0) {
                TreeNode cur = queue.poll();
                result++;
                if (cur.left != null) queue.offer(cur.left);
                if (cur.right != null) queue.offer(cur.right);
            }
        }
        return result;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
    /**
     * 针对完全二叉树的解法
     *
     * 满二叉树的结点数为:2^depth - 1
     */
    public int countNodes(TreeNode root) {
        if(root == null) {
            return 0;
        }
        int leftDepth = getDepth(root.left);
        int rightDepth = getDepth(root.right);
        if (leftDepth == rightDepth) {// 左子树是满二叉树
            // 2^leftDepth其实是 (2^leftDepth - 1) + 1 ,左子树 + 根结点
            return (1 << leftDepth) + countNodes(root.right);
        } else {// 右子树是满二叉树
            return (1 << rightDepth) + countNodes(root.left);
        }
    }

    private int getDepth(TreeNode root) {
        int depth = 0;
        while (root != null) {
            root = root.left;
            depth++;
        }
        return depth;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

# Python

递归法:

class Solution:
    def countNodes(self, root: TreeNode) -> int:
        return self.getNodesNum(root)
        
    def getNodesNum(self, cur):
        if not cur:
            return 0
        leftNum = self.getNodesNum(cur.left) #左
        rightNum = self.getNodesNum(cur.right) #右
        treeNum = leftNum + rightNum + 1 #中
        return treeNum
1
2
3
4
5
6
7
8
9
10
11

递归法:精简版

class Solution:
    def countNodes(self, root: TreeNode) -> int:
        if not root:
            return 0
        return 1 + self.countNodes(root.left) + self.countNodes(root.right)
1
2
3
4
5

迭代法:

import collections
class Solution:
    def countNodes(self, root: TreeNode) -> int:
        queue = collections.deque()
        if root:
            queue.append(root)
        result = 0
        while queue:
            size = len(queue)
            for i in range(size):
                node = queue.popleft()
                result += 1 #记录节点数量
                if node.left:
                    queue.append(node.left)
                if node.right:
                    queue.append(node.right)
        return result
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

完全二叉树

class Solution:
    def countNodes(self, root: TreeNode) -> int:
        if not root:
            return 0
        left = root.left
        right = root.right
        leftHeight = 0 #这里初始为0是有目的的,为了下面求指数方便
        rightHeight = 0
        while left: #求左子树深度
            left = left.left
            leftHeight += 1
        while right: #求右子树深度
            right = right.right
            rightHeight += 1
        if leftHeight == rightHeight:
            return (2 << leftHeight) - 1 #注意(2<<1) 相当于2^2,所以leftHeight初始为0
        return self.countNodes(root.left) + self.countNodes(root.right) + 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

# Go

递归版本

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
//本题直接就是求有多少个节点,无脑存进数组算长度就行了。
func countNodes(root *TreeNode) int {
    if root == nil {
        return 0
    }
    res := 1
    if root.Right != nil {
        res += countNodes(root.Right)
    }
    if root.Left != nil {
        res += countNodes(root.Left)
    }
    return res
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

利用完全二叉树特性的递归解法

func countNodes(root *TreeNode) int {
    if root == nil {
        return 0
    }
    leftH, rightH := 0, 0
    leftNode := root.Left
    rightNode := root.Right
    for leftNode != nil {
        leftNode = leftNode.Left
        leftH++
    }
    for rightNode != nil {
        rightNode = rightNode.Right
        rightH++
    }
    if leftH == rightH {
        return (2 << leftH) - 1
    }
    return countNodes(root.Left) + countNodes(root.Right) + 1
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

# JavaScript:

递归版本

var countNodes = function(root) {
    //递归法计算二叉树节点数
    // 1. 确定递归函数参数
    const getNodeSum=function(node){
    //2. 确定终止条件
        if(node===null){
            return 0;
        }
    //3. 确定单层递归逻辑
        let leftNum=getNodeSum(node.left);
        let rightNum=getNodeSum(node.right);
        return leftNum+rightNum+1;
    }
    return getNodeSum(root);
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

迭代(层序遍历)版本

var countNodes = function(root) {
    //层序遍历
    let queue=[];
    if(root===null){
        return 0;
    }
    queue.push(root);
    let nodeNums=0;
    while(queue.length){
        let length=queue.length;
        while(length--){
            let node=queue.shift();
            nodeNums++;
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
    }
    return nodeNums;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

利用完全二叉树性质

var countNodes = function(root) {
    //利用完全二叉树的特点
    if(root===null){
        return 0;
    }
    let left=root.left;
    let right=root.right;
    let leftHeight=0,rightHeight=0;
    while(left){
        left=left.left;
        leftHeight++;
    }
    while(right){
        right=right.right;
        rightHeight++;
    }
    if(leftHeight==rightHeight){
        return Math.pow(2,leftHeight+1)-1;
    }
    return countNodes(root.left)+countNodes(root.right)+1;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21