参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 496.下一个更大元素 I

力扣题目链接 (opens new window)

给你两个 没有重复元素 的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集。

请你找出 nums1 中每个元素在 nums2 中的下一个比其大的值。

nums1 中数字 x 的下一个更大元素是指 x 在 nums2 中对应位置的右边的第一个比 x 大的元素。如果不存在,对应位置输出 -1 。

示例 1:

输入: nums1 = [4,1,2], nums2 = [1,3,4,2].
输出: [-1,3,-1]
解释:
对于 num1 中的数字 4 ,你无法在第二个数组中找到下一个更大的数字,因此输出 -1 。
对于 num1 中的数字 1 ,第二个数组中数字1右边的下一个较大数字是 3 。
对于 num1 中的数字 2 ,第二个数组中没有下一个更大的数字,因此输出 -1 。

示例 2:
输入: nums1 = [2,4], nums2 = [1,2,3,4].
输出: [3,-1]
解释:
对于 num1 中的数字 2 ,第二个数组中的下一个较大数字是 3 。
对于 num1 中的数字 4 ,第二个数组中没有下一个更大的数字,因此输出-1 。

提示:

  • 1 <= nums1.length <= nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 10^4
  • nums1和nums2中所有整数 互不相同
  • nums1 中的所有整数同样出现在 nums2 中

# 思路

做本题之前,建议先做一下739. 每日温度 (opens new window)

739. 每日温度 (opens new window)中是求每个元素下一个比当前元素大的元素的位置。

本题则是说nums1 是 nums2的子集,找nums1中的元素在nums2中下一个比当前元素大的元素。

看上去和739. 每日温度 (opens new window) 就如出一辙了。

几乎是一样的,但是这么绕了一下,其实还上升了一点难度。

需要对单调栈使用的更熟练一些,才能顺利的把本题写出来。

从题目示例中我们可以看出最后是要求nums1的每个元素在nums2中下一个比当前元素大的元素,那么就要定义一个和nums1一样大小的数组result来存放结果。

一些同学可能看到两个数组都已经懵了,不知道要定一个一个多大的result数组来存放结果了。

这么定义这个result数组初始化应该为多少呢?

题目说如果不存在对应位置就输出 -1 ,所以result数组如果某位置没有被赋值,那么就应该是是-1,所以就初始化为-1。

在遍历nums2的过程中,我们要判断nums2[i]是否在nums1中出现过,因为最后是要根据nums1元素的下标来更新result数组。

注意题目中说是两个没有重复元素 的数组 nums1 和 nums2

没有重复元素,我们就可以用map来做映射了。根据数值快速找到下标,还可以判断nums2[i]是否在nums1中出现过。

C++中,当我们要使用集合来解决哈希问题的时候,优先使用unordered_set,因为它的查询和增删效率是最优的。我在关于哈希表,你该了解这些! (opens new window)中也做了详细的解释。

那么预处理代码如下:

unordered_map<int, int> umap; // key:下表元素,value:下表
for (int i = 0; i < nums1.size(); i++) {
    umap[nums1[i]] = i;
}
1
2
3
4

使用单调栈,首先要想单调栈是从大到小还是从小到大。

本题和739. 每日温度是一样的。

栈头到栈底的顺序,要从小到大,也就是保持栈里的元素为递增顺序。只要保持递增,才能找到右边第一个比自己大的元素。

可能这里有一些同学不理解,那么可以自己尝试一下用递减栈,能不能求出来。其实递减栈就是求右边第一个比自己小的元素了。

接下来就要分析如下三种情况,一定要分析清楚。

  1. 情况一:当前遍历的元素T[i]小于栈顶元素T[st.top()]的情况

此时满足递增栈(栈头到栈底的顺序),所以直接入栈。

  1. 情况二:当前遍历的元素T[i]等于栈顶元素T[st.top()]的情况

如果相等的话,依然直接入栈,因为我们要求的是右边第一个比自己大的元素,而不是大于等于!

  1. 情况三:当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况

此时如果入栈就不满足递增栈了,这也是找到右边第一个比自己大的元素的时候。

判断栈顶元素是否在nums1里出现过,(注意栈里的元素是nums2的元素),如果出现过,开始记录结果。

记录结果这块逻辑有一点小绕,要清楚,此时栈顶元素在nums2中右面第一个大的元素是nums2[i]即当前遍历元素。

代码如下:

while (!st.empty() && nums2[i] > nums2[st.top()]) {
    if (umap.count(nums2[st.top()]) > 0) { // 看map里是否存在这个元素
        int index = umap[nums2[st.top()]]; // 根据map找到nums2[st.top()] 在 nums1中的下表
        result[index] = nums2[i];
    }
    st.pop();
}
st.push(i);
1
2
3
4
5
6
7
8

以上分析完毕,C++代码如下:

// 版本一
class Solution {
public:
    vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
        stack<int> st;
        vector<int> result(nums1.size(), -1);
        if (nums1.size() == 0) return result;

        unordered_map<int, int> umap; // key:下表元素,value:下表
        for (int i = 0; i < nums1.size(); i++) {
            umap[nums1[i]] = i;
        }
        st.push(0);
        for (int i = 1; i < nums2.size(); i++) {
            if (nums2[i] < nums2[st.top()]) {           // 情况一
                st.push(i);
            } else if (nums2[i] == nums2[st.top()]) {   // 情况二
                st.push(i);
            } else {                                    // 情况三
                while (!st.empty() && nums2[i] > nums2[st.top()]) {
                    if (umap.count(nums2[st.top()]) > 0) { // 看map里是否存在这个元素
                        int index = umap[nums2[st.top()]]; // 根据map找到nums2[st.top()] 在 nums1中的下表
                        result[index] = nums2[i];
                    }
                    st.pop();
                }
                st.push(i);
            }
        }
        return result;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

针对版本一,进行代码精简后,代码如下:

// 版本二
class Solution {
public:
    vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
        stack<int> st;
        vector<int> result(nums1.size(), -1);
        if (nums1.size() == 0) return result;

        unordered_map<int, int> umap; // key:下表元素,value:下表
        for (int i = 0; i < nums1.size(); i++) {
            umap[nums1[i]] = i;
        }
        st.push(0);
        for (int i = 1; i < nums2.size(); i++) {
            while (!st.empty() && nums2[i] > nums2[st.top()]) {
                if (umap.count(nums2[st.top()]) > 0) { // 看map里是否存在这个元素
                    int index = umap[nums2[st.top()]]; // 根据map找到nums2[st.top()] 在 nums1中的下表
                    result[index] = nums2[i];
                }
                st.pop();
            }
            st.push(i);
        }
        return result;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

精简的代码是直接把情况一二三都合并到了一起,其实这种代码精简是精简,但思路不是很清晰。

建议大家把情况一二三想清楚了,先写出版本一的代码,然后在其基础上在做精简!

# 其他语言版本

Java

class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        Stack<Integer> temp = new Stack<>();
        int[] res = new int[nums1.length];
        Arrays.fill(res,-1);
        HashMap<Integer, Integer> hashMap = new HashMap<>();
        for (int i = 0 ; i< nums1.length ; i++){
            hashMap.put(nums1[i],i);
        }
        temp.add(0);
        for (int i = 1; i < nums2.length; i++) {
            if (nums2[i] <= nums2[temp.peek()]) {
                temp.add(i);
            } else {
                while (!temp.isEmpty() && nums2[temp.peek()] < nums2[i]) {
                    if (hashMap.containsKey(nums2[temp.peek()])){
                        Integer index = hashMap.get(nums2[temp.peek()]);
                        res[index] = nums2[i];
                    }
                    temp.pop();
                }
                temp.add(i);
            }
        }

        return res;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Python:

class Solution:
    def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:
        result = [-1]*len(nums1)
        stack = [0]
        for i in range(1,len(nums2)):
            # 情况一情况二
            if nums2[i]<=nums2[stack[-1]]:
                stack.append(i)
            # 情况三
            else:
                while len(stack)!=0 and nums2[i]>nums2[stack[-1]]:
                    if nums2[stack[-1]] in nums1:
                        index = nums1.index(nums2[stack[-1]])
                        result[index]=nums2[i]
                    stack.pop()                 
                stack.append(i)
        return result
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Go:

func nextGreaterElement(nums1 []int, nums2 []int) []int {
    res := make([]int, len(nums1))
    for i:= range res {
        res[i] = -1
    }
    mp := map[int]int{}
    for i,v := range nums1 {
        mp[v] = i
    }
    // 单调栈
    stack := []int{}
    stack = append(stack,0)

    for i:=1; i<len(nums2); i++ {
        for len(stack) >0 && nums2[i] > nums2[stack[len(stack)-1]] {

            top := stack[len(stack)-1]

            if _, ok := mp[nums2[top]]; ok {    // 看map里是否存在这个元素
                index := mp[nums2[top]];        // 根据map找到nums2[top] 在 nums1中的下表
                res[index] = nums2[i]
            }

            stack = stack[:len(stack)-1]        // 出栈
        }
        stack = append(stack, i)
    } 
    return res
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

JavaScript:

var nextGreaterElement = function (nums1, nums2) {
  let stack = [];
  let map = new Map();
  for (let i = 0; i < nums2.length; i++) {
    while (stack.length && nums2[i] > nums2[stack[stack.length - 1]]) {
      let index = stack.pop();
      map.set(nums2[index], nums2[i]);
    }
    stack.push(i);
  }

  let res = [];
  for (let j = 0; j < nums1.length; j++) {
    res[j] = map.get(nums1[j]) || -1;
  }

  return res;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18